
jFuzzyLogic: A Robust and Flexible Fuzzy-Logic
Inference System Language Implementation

Pablo Cingolani
School of Computer Science

McGill University
Montreal, Quebec, H3A-1A4, Canada

Email: pablo.cingolani@mcgill.ca

Jesús Alcalá-Fdez, Member, IEEE
Department of Computer Science and Artificial Intelligence

University of Granada, CITIC-UGR
Granada, 18071, Spain

Email: jalcala@decsai.ugr.es

Abstract—This work introduces jFuzzyLogic, an open source
library for fuzzy systems which allow us to design Fuzzy
Logic Controllers supporting the standard for Fuzzy Control
Programming published by the International Electrotechnical
Commission. This library is written in Java and is available
as open source from jfuzzylogic.sourceforge.net. The use of
jFuzzyLogic is illustrated through the analysis of one case study.

I. INTRODUCTION

Fuzzy rule based systems (FRBSs) are one of the most
important areas for the application of the Fuzzy Set Theory
[1]. Classical rule based systems deal with IF-THEN rules.
FRBSs constitute an extension to classical systems, having
antecedents and consequents composed of fuzzy logic state-
ments.

A Fuzzy Logic Controller (FLC) [2]–[5] is a FRBS com-
posed of: i-) a Knowledge Base that comprises the information
used by the expert operator in the form of linguistic control
rules; ii-) a Fuzzification Interface, that transforms the crisp
values of the input variables into fuzzy sets; iii-) an Inference
System, that uses the fuzzy values from the Fuzzification
Interface and the information from the Knowledge Base to
perform the reasoning process and iv-) the Defuzzification
Interface, which takes the fuzzy action from the Inference
System and translates it into crisp values for the control
variables.

FLCs are suitable for engineering applications in which
classical control strategies do not achieve good results or when
it is too difficult to obtain a mathematical model. FLCs usually
have two characteristics: the need for human operator experi-
ence, and a strong non linearity. Many real-world applications
use FLCs [6] such as mobile robot navigation [7], [8], air
conditioning controllers [9], [10], domotic control [11], [12],
and industrial applications [13], [14].

FLCs are powerful for solving a wide range of problems,
but their implementation requires a certain programming ex-
pertise. In the last few years, many fuzzy logic software
tools have been developed to reduce this task. Some are
commercially distributed, for example MATLAB Fuzzy logic
toolbox(www.mathworks.com), while a few are available as
open source software (see section II).

In this work, we introduce an open source Java library
named jFuzzyLogic. This fuzzy systems library allows FLCs
design and implementation, following the standard for Fuzzy
Control Language (FCL) published by the International Elec-
trotechnical Commission (IEC 61131-7) [15]. The IEC-61131
norm is well known for defining the Programmable Controller
Languages (PLC), commonly used in industrial applications.
In the part 7, this standard offers a well defined common
understanding of the basic means to integrate fuzzy control
applications in control systems. It also defines a common
language to exchange portable fuzzy control programs among
different platforms.

The main goal of jFuzzyLogic is to bring the benefits of
open source software and standardization to the fuzzy systems
community. Our library offers several advantages:
• Standardization, which reduces programming work and

learning curve. This library contains the basic program-
ming elements for the Standard IEC 61131-7, alleviating
developers from boiler plate programming tasks.

• Extensibility, the object model and API allows to create
a wide range of applications. This is of special interest
for the research community.

• Platform independence, allows to develop and run on
any hardware and operating system configuration that
supports Java.

This work is arranged as follows. The next section presents
a comparison on non-commercial fuzzy software and the main
benefits that the jFuzzyLogic offers with respect to other
libraries. Section III describes jFuzzyLogic’s main features.
Section IV, illustrates how jFuzzyLogic can be used in a
control application. Conclusions are presented in Section V.

II. COMPARISON OF FUZZY LOGIC SOFTWARE

In this section we present a comparison on non-commercial
fuzzy software (Table I). We center our interest on free
software distributions because of its important role in the
scientific research community [16]. Moreover, we do not want
to establish a comparison among all software tools or to
emphasize the advantages of one over another. Our objective
is to detect the major differences in the software and then to
categorize jFuzzyLogic as an alternative to these suites when
other research requirements are needed.



We analyze twenty five packages (including jFuzzyLogic),
mostly from SourceForge or Google-Code, which are consid-
ered to be amongst the most respectable software repositories.
The packages are analyzed in the following categories:

• FCL support. Only four packages (∼ 17%) claim to sup-
port IEC 61131-7 specification. Notably two of them are
based on jFuzzyLogic. Only two packages that support
FCL are not based on our software. Unfortunately neither
of them seem to be maintained by their developers any
more. Furthermore, one of them has some code from
jFuzzyLogic.

• Programming language. This is an indicator of code
portability. There languages of choice were mainly Java
and C++/C (column Lang.). Java being platform inde-
pendent has the advantage of portability. C++ has an
advantage in speed, but also allows easier integration in
industrial controllers.

• Functionality. Seven packages (∼ 29%) were made for
specific purposes, marked as ‘specific’ (column Notes,
Table I). Specific code usually has limited functionality,
but it is simpler and has a faster learning curve for the
user.

• Membership functions. This is an indicator of how com-
prehensive and flexible the package is. Specific packages
include only one membership function (typically trape-
zoid) and/or one defuzzification method (data not shown).
In some cases, arbitrary combinations of membership
functions are possible. These packages are marked with
asterisk. For example, ‘M +N∗’ means that the software
supports M membership functions plus another N which
can be arbitrarily combined.

• Latest release. In eight cases (∼ 33%) there were no
released files for the last three years or more (see Rel.
column in the Table I). This may indicate that the package
is no longer maintained, and in some cases the web site
explicitly mentions this.

• Code availability and usability. Five of the packages (∼
21%) had no files available, either because the project
was no longer maintained or because the project never
released any files at all. Whenever the original sites were
down, we tried to retrieve the projects from alternative
mirrors. In three cases (∼ 13%) the packages did not
compile. We performed minimal testing by just following
the instructions, if available, and make no effort to correct
any compilation problems.

In summary, only eight of the software packages (∼ 33%)
seemed to be maintained, compiled correctly, and had exten-
sive functionality. Only two of them are capable of parsing
FCL (IEC-61131-7) files and both are based on jFuzzyLogic.

III. JFUZZYLOGIC

Fuzzy Control Language is an industry standard specifica-
tion released by the International Electrotechnical Commission
(IEC) as part of the Programmable Controller Languages
(PLC) defined in the IEC-61131 specification.

The specification defines six programming languages: In-
struction list (IL), Structured text (ST), Ladder diagram (LD),
Function block diagram (FBD), Sequential function chart
(SFC), and Fuzzy Control Language (FCL). While IL, ST,
and FCL are text based languages, LD, FBD and SFC are
graphic based languages.

Instruction list is similar to assembly language: one in-
struction per line, low level and low expression commands.
Structured text, as the name suggests, intends to be more
structured and it is very easy to learn and understand for
anyone with a modest experience in programming. The focus
of this work is FCL, which is oriented to fuzzy logic based
control systems and its syntax is similar to ST.

A. IEC Language concepts

All IEC-61131 languages are modular. The basic module is
called Programmable Organization Unit (POU) and includes
Programs, Functions or Function Blocks. A system is usually
composed of many POUs, and each of these POUs can
be programmed in a different language. For instance, in a
system consisting of two functions and one function block
(three POUs), one function may be programed in LD, another
function in IL and the function block may be programmed in
ST. The norm defines all common data types (e.g. BOOL,
REAL, INT, ARRAY, STRUCT, etc.) as well as ways to
interconnect POUs, assign process execution priorities, process
timers, CPU resource assignment, etc.

The concepts of a Program and Functions are quite intuitive.
Programs are simple set of statements and variables. Functions
are calculations that can return only one value and are not
supposed to have state variables.

A Function Block resembles a very primitive object. It
can have multiple input and multiple output variables, can be
enabled by an external signal, and can have local variables.
Unlike an object, a function block only has one execution
block (i.e. there are no methods). The underlying idea for these
limitations is that you should be able to implement programs
using either text-based or graphic-based languages. Having
only one execution block, allows to easily control execution
when using graphic-based language to interconnect POUs.

At first glance FCL is similar to ST. However, there are
some very important differences. FCL uses exclusively a new
POU type: Fuzzy Inference System (FIS) which is a special
case of a Function Block. All fuzzy language definitions
should be within a FIS. Since a fuzzy system is inherently
parallel, there is no concept of execution order, therefore there
are no statements. For instance, there is no way to create
the typical “Hello world” example since there is no print
statement. A simple example of a FIS using FCL is shown
in Table II, this FCL code calculates the tip in a restaurant
(the equivalent of a “Hello world” program in fuzzy systems).
Fig. 1 shows the membership functions.

Table III shows the corresponding Java code to run the FCL
code shown in Table II.



TABLE I
COMPARISSON ON OPEN FUZZY LOGIC SOFTWARE PACKAGES. COLUMNS DESCRIBE: PROJECT NAME (NAME), IEC 61131-7 LANGUAGE SUPPORT (IEC),

LATEST RELEASE YEAR (REL.), MAIN PROGRAMMING LANGUAGE (LANG.), SHORT DESCRIPTION FORM WEBSITE (DESCRIPTION), NUMBER OF
MEMBERSHIP FUNCTIONS SUPPORTED (MF) AND FUNCTIONALITY (NOTES). NAME∗ : PACKAGE IS MAINTAINED, COMPILES CORRECTLY, AND HAS

EXTENSIVE FUNCTIONALITY.

Name IEC Rel. Lang. Description MF Notes
Akira No 2007 C++ Framework for complex AI agents. 4
AwiFuzz Yes 2008 C++ Fuzzy logic expert system 2 Does not compile
DotFuzzy No 2009 C# .NET library for fuzzy logic 1 Specific
FFLL Yes 2003 C++ Optimized for speed critical applications. 4 Does not compile
Fispro∗ No 2010 C++/Java Fuzzy inference design and optimization 6
FLUtE No 2004 C# A generic Fuzzy Logic Engine 1 Beta version
FOOL No 2002 C Fuzzy engine 5 Does not compile
FRBS No 2011 C++ Fuzzy Rule-Based Systems 1 Specific
funzy No 2007 Java Fuzzy Logic reasoning 2∗ Specific
Fuzzy Logic Tools∗ No 2011 C++ Framework fuzzy control systems, 12
FuzzyBlackBox No - - Implementing fuzzy logic - No files released
FuzzyClips No 2004 C/Lisp Fuzzy logic extension of CLIPS 3 + 2∗ No longer maintained
FuzzyJ ToolKit No 2006 Java Fuzzy logic extension of JESS 15 No longer maintained
FuzzyPLC∗ Yes 2011 Java Fuzzy controller for PLC Siemens s226 11 + 14∗ Uses jFuzzyLogic
GUAJE∗ No 2011 Java Development environment Uses FisPro
javafuzzylogicctrltool No - Java Framework for fuzzy rules - No files released
JFCM No 2011 Java Fuzzy Cognitive Maps (FCM) - Specific
JFuzzinator No 2010 Java Type-1 Fuzzy logic engine 2 Specific
jFuzzyLogic∗ Yes 2011 Java FCL and Fuzzy logic API 11 + 14∗ This paper
jFuzzyQt∗ Yes 2011 C++ jFuzzyLogic clone 8
libai No 2010 Java AI library, implements some fuzzy logic 3 Specific
libFuzzyEngine No 2010 C++ Fuzzy Engine for Java 1 Specific
nxtfuzzylogic No 2010 Java For Lego Mindstorms NXT 1 Specific
Octave FLT∗ No 2011 Octave Fuzzy logic for Toolkit 11
XFuzzy3∗ No 2003 Java Development environment 6 Implements XFL3 specification language

Fig. 1. Membership functions for tipper example.

B. jFuzzyLogic Implementation

jFuzzyLogic is fully implemented in Java, thus the package
is platform independent. ANTLR [17] was used to generate
Java code for a lexer and parser based on our FCL grammar
definition. This generated parser uses a left to right leftmost
derivation recursive strategy, formally know as “LL(*)”.

Using the lexer and parser created by ANTLR we are able to
parse FCL files by creating an Abstract Syntax Tree (AST), a
well known structure in compiler design. The AST is converted
into an Interpreter Syntax Tree (IST), which is capable of

performing the required computations. This means that the IST
can represent the grammar, like and AST, but it also capable
of performing calculations. The parsed FIS can be evaluated
by recursively transversing the IST.

A FIS inference system is usually composed of one or more
Function Blocks (FB). Each FB has variables (input, output
or instance variables) as well as one or more Rule Blocks
(RB). Each rule block is composed of a set of rules, as well
as Aggregation, Activation and Accumulation methods. All
methods defined in the norm are implemented in jFuzzyLogic.
It should be noted that we adhere to the definitions of
Aggregation, Activation and Accumulation as defined by IEC-
61131-7, which may differ from the naming conventions from
other references (e.g. “Aggregation” may sometimes be called
“Combination”).

Aggregation methods define the t-norms and t-conorms
playing the role of AND, OR and NOT operators. These can be
Minimum, Product or Bounded difference operators. Needless
to say, each set of operators must satisfy De Morgans laws.

Activation method define how rule antecedents modify rule
consequents, i.e. once the IF part has been evaluated, how
this result is applied to the THEN part of the rule. The most
common activation operators are Minimum and Product (see
Figure 2).



TABLE II
EXAMPLE OF FUZZY CONTROL LANGUAGE (FCL) CODE.

FUNCTION_BLOCK tipper

VAR_INPUT
service, food : REAL;

END_VAR

VAR_OUTPUT
tip : REAL;

END_VAR

FUZZIFY service
TERM poor := (0, 1) (4, 0) ;
TERM good := (1, 0) (4,1) (6,1) (9,0);
TERM excellent := (6, 0) (9, 1);

END_FUZZIFY

FUZZIFY food
TERM rancid := (0, 1) (1, 1) (3,0);
TERM delicious := (7,0) (9,1);

END_FUZZIFY

DEFUZZIFY tip
TERM cheap := (0,0) (5,1) (10,0);
TERM average := (10,0) (15,1) (20,0);
TERM generous := (20,0) (25,1) (30,0);
METHOD : COG; // Center of Gravity

END_DEFUZZIFY

RULEBLOCK tipRules
Rule1: IF service IS poor OR food IS rancid THEN tip IS cheap;
Rule2: IF service IS good THEN tip IS average;
Rule3: IF service IS excellent AND food IS delicious THEN tip IS generous;

END_RULEBLOCK

END_FUNCTION_BLOCK

TABLE III
EXAMPLE OF JAVA API TO EXECUTE FCL CODE.

public class TestTipper {
public static void main(String[] args)
throws Exception {
FIS fis = FIS.load("fcl/tipper.fcl", true);
FunctionBlock fb = fis.getFunctionBlock(null);
// Set inputs
fb.setVariable("service", 3);
fb.setVariable("food", 7);
// Evaluate
fb.evaluate();
// Get output
double tip = fb.getVariable("tip").getValue());

}
}

Fig. 2. Activation methods: Min (left) and Prod (right).

Finally, accumulation method defines how the consequents
from multiple rules are combined within a Rule Block (see
Fig. 3). Accumulation methods defined in the norm include:
Maximum, Bounded sum, Normed sum, Probabilistic OR, and

Sum.

Only two membership functions are defined in the IEC
standard: singleton and piece-wise linear. jFuzzyLogic also im-
plements other commonly used membership functions: trape-
zoidal, sigmoidal, gaussian, generalized bell, difference of sig-
moidal, and cosine. Furthermore, jFuzzyLogic allows to build
arbitrary membership functions by combining mathematical
functions.

Because of the flexibility in defining membership functions,
we discretize them at a number of points. The number of
points, by default one thousand, can be adjusted according



Fig. 3. Accumulation method: Combining consequents from multiple rules
using Max accumulation method.

to the precision-speed trade-off required for a particular ap-
plication. Inference is performed by evaluating membership
functions at these discretization points. In order to perform
a discretization, the “universe” for each variable, has to be
estimated. The universe is defined as the range where the
variable has non-neglectable value. For each variable, each
membership function and each term is taken into account when
calculating a universe. Once all rules have been analyzed, the
accumulation for each variable is complete.

The last step when evaluating a FIS is defuzzification.
The value for each variable is calculated using the selected
defuzzification method, which can be ’Center of gravity’,
’Rightmost Max’, ’Center of area’, ’Leftmost Max’, ’Mean
max’ (continuous membership functions), or ’Center of grav-
ity’ (discrete membership functions).

C. API extensions

Some of the extensions and benefits provided by jFuzzy-
Logic are described in this section.

Modularity. Modular design allows to extend the language
and the API easily. It is possible to add custom aggregation,
activation or accumulation methods, defuzzifiers, or member-
ship functions by extending the provided object tree.

Dynamic changes. Our API supports dynamic changes made
onto a fuzzy inference system: i) variables can be used as
membership function parameters; ii) rules can be added or
deleted from rule blocks, iii) rule weights can be modified;
iv) membership functions can use combinations of pre-defined
functions.

Optimization API. An optimization API is available, allow-
ing fine tuning membership function rules and rule weights. A
few optimization algorithms are already implemented, such as
gradient descent, partial derivative, and delta algorithm. Other
optimization algorithms can be implemented based on these
templates.

Data Types. Due to the nature of fuzzy systems and in order
to reduce complexity, jFuzzyLogic considers each variable as
REAL variable which is mapped to a double Java type.

Excecution order. By default it is assumed that a FIS is
composed of only one Function Block, so evaluating the FIS
means evaluating the default FB. If a FIS has more than one
FB, they are evaluated in alphabetical order by FB name. Other

Fig. 4. Membership functions for wall-following robot.

execution orders can be implemented by the user, which allows
us to easily define hierarchical controllers.

IV. A CASE STUDY

We present an example of creating an FLC controller with
jFuzzyLogic. This case study is focused on the development of
the wall following robot as explained in [18]. Wall following
behavior is well known in mobile robotics. It is frequently
used for the exploration of unknown indoor environments and
for the navigation between two points in a map.

The main requirement of a good wall-following controller
is to maintain a suitable distance from the wall that is being
followed. The robot should also move as fast as possible, while
avoiding sharp movements, making smooth and progressive
turns and changes in velocity.

In our fuzzy control system, the input variables are: i)
normalized distances from the robot to the right (RD) and
left walls (DQ); ii) orientation with respect to the wall (O);
and iii) linear velocity (V ). The output variables in this
controller are the normalized linear acceleration (LA) and the
angular velocity (AV ). The linguistic partitions are shown in
Fig. 4 which are comprised by linguistic terms with uniformly
distributed triangular membership functions giving meaning to
them.

In order to implement the controller, the first step is to
declare the input and output variables and to define the fuzzy
sets (Table IV). Variables are defined in VAR INPUT and
VAR OUTPUT sections. Fuzzy sets are defined in FUZZIFY
blocks for input variables and DEFUZZIFY blocks for output
variables.

One FUZZIFY block is used for each input variable. Each
TERM line within a FUZZIFY block defines a linguistic term
and its corresponding membership function. In this example all
membership functions are triangular, so they are defined using
the ’trian’ keyword, followed by three parameters defining left,
center and right points (e.g. ‘trian 1 2 3’).

Output variables define their membership functions within
DEFUZZIFY blocks. Linguistic terms and membership func-
tions are defined using the TERM keyword as previously de-



scribed for input variables. In this case we also add parameters
to select the defuzzyfication method. The statement ’METHOD
: COG’ indicates that we are using ’Center of gravity’.

These membership functions can be plotted by
running jFuzzyLogic with an FCL file, having the code
shown in Table IV, as argument (e.g. java -jar
jFuzzyLogic.jar robot.fcl). The corresponding
FCL file for this case study is available for download as
one of the examples provided in jFuzzyLogic package
(jfuzzylogic.sourceforge.net).

The second step is to define the rules used for inference.
They are defined in RULEBLOCK statements. For the wall-
following robot controller, we used ’minimum’ connection
method (AND : MIN), minimum activation method (ACT :
MIN), and maximum accumulation method (ACCU : MAX).
We implemented the rule base generated in [18] by the WCOR
method [19]. Each entry in the rule base was converted to a
single FCL rule (Table V). Within each rule, the antecedent
(i.e. the IF part) is composed of the input variables connected
by ‘AND’ operators. Since there are more than one output
variable, we can specify multiple consequents (i.e. THEN
part) separated by semicolons. Finally, we add the desired
weight using the ‘with’ keyword followed by the weight.
This completes the implementation of a controller for a wall-
following robot using FCL and jFuzzyLogic.

V. CONCLUSIONS

In this paper, we have described jFuzzyLogic, an open
source Java library for fuzzy systems which allow us to design
FLCs following the standard IEC 61131. It allows us to reduce
programming work and extend the range of possible users
applying fuzzy systems and FLCs.

We have shown a case study to illustrate the use of jFuzzy-
Logic. In this case, we developed an FLC controller for wall-
following behavior in a robot. The example shows how FCL
can be used to easily implement fuzzy logic systems.

The jFuzzyLogic software package is continuously being
updated and improved. At the moment, we are developing
an implementation of a C/C++ compiler for fuzzy inference
systems. This will allow easy implementation with embedded
control systems using different processors.

ACKNOWLEDGMENT

jFuzzyLogic was designed and developed by P. Cingolani.
He is supported in part by McGill Uninversity, Genome
Quebec. J. Alcala-Fdez is supported by the Spanish Ministry
of Education and Science under Grant TIN2011-28488 and
the Andalusian Government under Grant P10-TIC-6858.

We would like to thank R. Sladek and M. Blanchette
for their comments. Special thanks to P.J. Leonard for his
contributions to the project.

REFERENCES

[1] L. Zadeh, “Fuzzy sets,” Information Control, vol. 8, pp. 338–353, 1965.
[2] C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller parts i

and ii,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20,
pp. 404–435, 1990.

[3] H. H. D. Driankov and M. Reinfrank, An Introduction to Fuzzy Control.
Springer-Verlag, 1993.

[4] R. Yager and D. Filev, Essentials of fuzzy modeling and control. Wiley,
New York, 1994.

[5] P. Bonissone, “Fuzzy logic controllers: An industrial reality,” in Com-
putational Intelligence: Imitating Life. IEEE Press, 1994, pp. 316–327.

[6] R. Palm, D. Driankov, and H. Hellendoorn, Model based fuzzy control.
Springer, Berlin, 1997.

[7] M. Mucientes, J. Alcalá-Fdez, R. Alcalá, and J. Casillas, “A case study
for learning behaviors in mobile robotics by evolutionary fuzzy systems,”
Expert Systems With Applications, vol. 37, no. 2, pp. 1471–1493, 2010.

[8] C.-F. Juang and Y.-C. Chang, “Evolutionary-group-based particle-
swarm-optimized fuzzy controller with application to mobile-robot navi-
gation in unknown environments,” IEEE Transactions on Fuzzy Systems,
vol. 19, no. 2, pp. 379–392, 2011.

[9] M. Gacto, R. Alcalá, and F. Herrera, “A multi-objective evolutionary
algorithm for an effective tuning of fuzzy logic controllers in heating,
ventilating and air conditioning systems,” Applied Intelligence, vol. 36,
no. 2, pp. 330–347, 2012.

[10] E. Cho, M. Ha, S. Chang, and Y. Hwang, “Variable fuzzy control for
heat pump operation,” Journal of Mechanical Science and Technology,
vol. 25, no. 1, pp. 201–208, 2011.

[11] F. Chávez, F. Fernández, R. Alcalá, J. Alcalá-Fdez, G. Olague, and
F. Herrera, “Hybrid laser pointer detection algorithm based on template
matching and fuzzy rule-based systems for domotic control in real home
enviroments,” Applied Intelligence, vol. 36, no. 2, pp. 407–423, 2012.

[12] G. Acampora and V. Loia, “Fuzzy control interoperability and scalability
for adaptive domotic framework,” IEEE Transactions on Industrial
Informatics, vol. 1, no. 2, pp. 97 – 111, 2005.

[13] Y. Zhao and H. Gao, “Fuzzy-model-based control of an overhead crane
with input delay and actuator saturation,” IEEE Transactions on Fuzzy
Systems, vol. 20, no. 1, pp. 181 –186, 2012.

[14] O. Demir, I. Keskin, and S. Cetin, “Modeling and control of a non-
linear half-vehicle suspension system: A hybrid fuzzy logic approach,”
Nonlinear Dynamics, vol. 67, no. 3, pp. 2139–2151, 2012.

[15] International Electrotechnical Commission technical committee indus-
trial process measurement and control. IEC 61131 - Programmable
Controllers - Part 7: Fuzzy control programming. IEC, 2000.

[16] S. Sonnenburg, M. Braun, C. Ong, S. Bengio, L. Bottou, G. Holmes,
Y. LeCun, K.-R. Muller, F. Pereira, C. Rasmussen, G. Ratsch,
B. Scholkopf, A. Smola, P. Vincent, J. Weston, and R. Williamson, “The
need for open source software in machine learning,” Journal of Machine
Learning Research, vol. 8, pp. 2443–2466, 2007.

[17] T. Parr, The definitive ANTLR reference: building domain-specific lan-
guages, 2007.

[18] M. Mucientes, R. Alcalá, J. Alcalá-Fdez, and J. Casillas, “Learning
weighted linguistic rules to control an autonomous robot,” International
Journal of Intelligent Systems, vol. 24, no. 3, pp. 226–251, 2009.

[19] R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, and F. Herrera, “Hybrid
learning models to get the interpretability-accuracy trade-off in fuzzy
modelling,” Soft Computing, vol. 10, no. 9, pp. 717–734, 2006.



TABLE IV
WALL FOLLOWING ROBOT: FUZZY CONTROLLER IN FCL LANGUAGE: VARIABLE DEFINITIONS.

VAR_INPUT
rd : REAL; // Right distance
dq : REAL; // Distance quotient
o : REAL; // Orientation. Note: ’or’ is a reserved word
v : REAL; // Velocity

END_VAR

VAR_OUTPUT
la : REAL; // Linear acceleration
av : REAL; // Angular velocity

END_VAR

FUZZIFY rd
TERM L := trian 0 0 1;
TERM M := trian 0 1 2;
TERM H := trian 1 2 3;
TERM VH := trian 2 3 3;

END_FUZZIFY

FUZZIFY dq
TERM L := trian 0 0 2;
TERM H := trian 0 2 2;

END_FUZZIFY

FUZZIFY o
TERM HL := trian -450 -450 -225;
TERM LL := trian -450 -225 0;
TERM Z := trian -225 0 225;
TERM LR := trian 0 225 450;
TERM HR := trian 225 450 450;

END_FUZZIFY

FUZZIFY v
TERM L := trian 0 0 1;
TERM H := trian 0 1 1;

END_FUZZIFY

DEFUZZIFY la
TERM VHB := trian -1 -1 -0.75;
TERM HB := trian -1 -0.75 -0.5;
TERM MB := trian -0.75 -0.5 -0.25;
TERM SB := trian -0.5 -0.25 0;
TERM Z := trian -0.25 0 0.25;
TERM SA := trian 0 0.25 0.5;
TERM MA := trian 0.25 0.5 0.75;
TERM HA := trian 0.5 0.75 1;
TERM VHA := trian 0.75 1 1;
METHOD : COG; // Center of Gravity
DEFAULT := 0;

END_DEFUZZIFY

DEFUZZIFY av
TERM VHR := trian -1 -1 -0.75;
TERM HR := trian -1 -0.75 -0.5;
TERM MR := trian -0.75 -0.5 -0.25;
TERM SR := trian -0.5 -0.25 0;
TERM Z := trian -0.25 0 0.25;
TERM SL := trian 0 0.25 0.5;
TERM ML := trian 0.25 0.5 0.75;
TERM HL := trian 0.5 0.75 1;
TERM VHL := trian 0.75 1 1;
METHOD : COG;
DEFAULT := 0;

END_DEFUZZIFY



TABLE V
WALL FOLLOWING ROBOT. FUZZY CONTROLLER IN FCL LANGUAGE: RULE BLOCK.

RULEBLOCK rules
AND : MIN; // Use ’min’ for ’and’ (also implicit use ’max’ for ’or’ to fulfill DeMorgan’s Law)
ACT : MIN; // Use ’min’ activation method
ACCU : MAX; // Use ’max’ accumulation method

RULE 01: IF rd is L and dq is L and o is LL and v is L THEN la is VHB , av is VHR with 0.4610;
RULE 02: IF rd is L and dq is L and o is LL and v is H THEN la is VHB , av is VHR with 0.4896;
RULE 03: IF rd is L and dq is L and o is Z and v is L THEN la is Z , av is MR with 0.6664;
RULE 04: IF rd is L and dq is L and o is Z and v is H THEN la is HB , av is SR with 0.5435;
RULE 05: IF rd is L and dq is H and o is LL and v is L THEN la is MA , av is HR with 0.7276;
RULE 06: IF rd is L and dq is H and o is Z and v is L THEN la is MA , av is HL with 0.4845;
RULE 07: IF rd is L and dq is H and o is Z and v is H THEN la is HB , av is ML with 0.5023;
RULE 08: IF rd is L and dq is H and o is LR and v is H THEN la is VHB , av is VHL with 0.7363;
RULE 09: IF rd is L and dq is H and o is HR and v is L THEN la is VHB , av is VHL with 0.9441;
RULE 10: IF rd is M and dq is L and o is Z and v is H THEN la is SA , av is HR with 0.3402;
RULE 11: IF rd is M and dq is L and o is LR and v is H THEN la is Z , av is VHL with 0.4244;
RULE 12: IF rd is M and dq is L and o is HR and v is L THEN la is SA , av is HL with 0.5472;
RULE 13: IF rd is M and dq is L and o is HR and v is H THEN la is MB , av is VHL with 0.4369;
RULE 14: IF rd is M and dq is H and o is HL and v is L THEN la is Z , av is VHR with 0.1770;
RULE 15: IF rd is M and dq is H and o is HL and v is H THEN la is VHB , av is VHR with 0.4526;
RULE 16: IF rd is M and dq is H and o is LL and v is H THEN la is SA , av is VHR with 0.2548;
RULE 17: IF rd is M and dq is H and o is Z and v is L THEN la is HA , av is Z with 0.2084;
RULE 18: IF rd is M and dq is H and o is LR and v is L THEN la is HA , av is VHL with 0.6242;
RULE 19: IF rd is M and dq is H and o is LR and v is H THEN la is SA , av is VHL with 0.3779;
RULE 20: IF rd is M and dq is H and o is HR and v is L THEN la is Z , av is VHL with 0.6931;
RULE 21: IF rd is M and dq is H and o is HR and v is H THEN la is VHB , av is VHL with 0.7580;
RULE 22: IF rd is H and dq is L and o is Z and v is L THEN la is HA , av is VHR with 0.5758;
RULE 23: IF rd is H and dq is L and o is LR and v is H THEN la is SA , av is MR with 0.2513;
RULE 24: IF rd is H and dq is L and o is HR and v is L THEN la is HA , av is VHL with 0.5471;
RULE 25: IF rd is H and dq is L and o is HR and v is H THEN la is SA , av is HL with 0.5595;
RULE 26: IF rd is H and dq is H and o is HL and v is L THEN la is VHB , av is VHR with 0.9999;
RULE 27: IF rd is H and dq is H and o is HL and v is H THEN la is VHB , av is VHR with 0.9563;
RULE 28: IF rd is H and dq is H and o is LL and v is L THEN la is HA , av is VHR with 0.9506;
RULE 29: IF rd is H and dq is H and o is Z and v is L THEN la is HA , av is VHR with 0.4529;
RULE 30: IF rd is H and dq is H and o is Z and v is H THEN la is SA , av is VHR with 0.2210;
RULE 31: IF rd is H and dq is H and o is LR and v is L THEN la is HA , av is MR with 0.3612;
RULE 32: IF rd is H and dq is H and o is LR and v is H THEN la is SA , av is MR with 0.2122;
RULE 33: IF rd is H and dq is H and o is HR and v is L THEN la is HA , av is HL with 0.7878;
RULE 34: IF rd is H and dq is H and o is HR and v is H THEN la is SA , av is VHL with 0.3859;
RULE 35: IF rd is VH and dq is L and o is LR and v is L THEN la is HA , av is VHR with 0.5530;
RULE 36: IF rd is VH and dq is L and o is HR and v is L THEN la is HA , av is HR with 0.4223;
RULE 37: IF rd is VH and dq is L and o is HR and v is H THEN la is SA , av is HR with 0.3854;
RULE 38: IF rd is VH and dq is H and o is LL and v is L THEN la is HA , av is VHR with 0.0936;
RULE 39: IF rd is VH and dq is H and o is LR and v is L THEN la is HA , av is VHR with 0.7325;
RULE 40: IF rd is VH and dq is H and o is LR and v is H THEN la is SA , av is VHR with 0.5631;
RULE 41: IF rd is VH and dq is H and o is HR and v is L THEN la is HA , av is HR with 0.5146;

END_RULEBLOCK


