Optimization example
Java code to optimize fuzzy sets' parameters and fuzzy rule's weights
//---
// Load FIS (Fuzzy Inference System)
//---
FIS fis = FIS.load("fcl/qualify.fcl");
RuleBlock ruleBlock = fis.getFunctionBlock().getRuleBlock();
//---
// Create a list of parameter to optimize
//---
ArrayList parameterList = new ArrayList();
// Add variables.
// Note: Fuzzy sets' parameters for these
// variables will be optimized
Parameter.parameterListAddVariable(parameterList
, fis.getVariable("scoring"));
Parameter.parameterListAddVariable(parameterList
, fis.getVariable("credLimMul"));
// Add every rule's weight
for( Rule rule = ruleBlock )
Parameter.parameterListAddRule(parameterList, rule);
//---
// Create an error function to be
// optimzed (i.e. minimized)
//---
ErrorFunctionQualify errorFunction = new ErrorFunctionQualify();
//---
// Optimize (using 'Delta jump optimization')
//---
OptimizationDeltaJump optimizationDeltaJump =
new OptimizationDeltaJump(ruleBlock
, errorFunction, parameterList);
// Number optimization of iterations
optimizationDeltaJump.setMaxIterations(20);
optimizationDeltaJump.optimize(true);
|
The error funcion (in this particular case, ErrorFunctionQualify) can be just any error function, the structure for the code should be like this:
public class ErrorFunctionQualify extends ErrorFunction {
public double evaluate(RuleBlock ruleBlock) {
double error;
// Caculate your desired error here...
return error;
}
}
|
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Author: Pablo Cingolani (pcingola@users.sourceforge.net)